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Effects of Soft Electrophiles on Selenium Physiology 

Nicholas VC Ralstona* 

Abstract: 

This review examines the effects of neurotoxic electrophiles on selenium (Se) metabolism.   

Selenium-dependent enzymes depend on the unique and elite functions of selenocysteine (Sec), the 21st 

proteinogenic amino acid, to perform their biochemical roles. Humans possess 25 selenoprotein genes, 

~half of which are enzymes (selenoenzymes) required for preventing, controlling, or reversing oxidative 

damage, while others participate in regulating calcium metabolism, thyroid hormone status, protein 

folding, cytoskeletal structure, Sec synthesis and Se transport. While selenoproteins are expressed in 

tissue dependent distributions and levels in all cells of all vertebrates, they are particularly important in 

brain development, health, and functions. As the most potent intracellular nucleophile, Sec is subject to 

binding by mercury (Hg) and other electron poor soft neurotoxic electrophiles. Epidemiological and 

environmental studies of the effects of exposures to methyl-Hg (CH3Hg+), elemental Hg (Hg0), and/or 

other metallic/organic neurotoxic soft electrophiles need to consider the concomitant effects of all 

members of this class of toxicants in relation to the Se status of their study populations. The contributions 

of individual electrophiles’ discrete and cooperative rates of Se sequestration need to be evaluated in 

relation to tissue Se reserves of the exposed populations to identify sensitive subgroups which may be at 

accentuated risk due to poor Se status. Additional study is required to examine possibilities of inherited, 

acquired, or degenerative neurological disorders of Se homeostasis that may influence vulnerability to 

soft electrophile exposures. Investigations of soft electrophile toxicity will be enhanced by considering 

the concomitant effects of combined exposures on tissue Se-availability in relation to pathological 

consequences during fetal development or in relation to etiologies of neurological disorders and 

neurodegenerative diseases. Since selenoenzymes are molecular “targets” of soft electrophiles, 

concomitant evaluation of aggregate exposures to these toxicants in relation to dietary Se intakes will 

assist regulatory agencies in their goals of improving protecting public health. 

  



1.0 INTRODUCTION 

The first human illness reported in association with selenium (Se)-deficiency was congestive 

cardiomyopathy observed among children and women of child bearing age living Se-deficient regions of 

China (Anon, 1979) and also observed among patients on total parenteral nutrition in New Zealand and 

Finland (van Rij et al., 1979). The poor availability of Se in the soils of affected regions and consumption 

of the low Se food crops and livestock resulted in significantly Se-deficient populations. In the 1970’s, Se 

was identified in glutathione peroxidase (GPX) (Rotruck et al., 1973) and was soon determined to occur 

as selenocysteine (Sec), a newly recognized amino acid (Cone et al., 1976). Subsequently determined to 

be an essential micronutrient, Se’s recommended dietary allowance (RDA) in the United States is (55 

μg/day) for men and women (National Academies Press, 2000). Homeostatic processes ensure brain, 

endocrine organs, and the placenta are adequately supplied with Se, even during severe dietary Se 

deficiency (Schomburg et al., 2003; Burk et al., 2007; Burk et al., 2013), thus preventing development of  

pathological consequences that would otherwise have arisen. Therefore, the necessity of Se for the normal 

functions of these tissues was not apparent in earlier studies. However, the roles of Se (See review by 

Reich and Hondal, 2016) particularly in brain (Buckman et al., 1993; Köhrle et al., 2000; Rayman, 2000; 

Whanger, 2001; Sun et al., 2001; Chen and Berry 2003; Schweizer et al., 2004; Zhang et al., 2008;) and 

endocrine tissues (Köhrle et al., 2005; Köhrle and Gärtner, 2009) are well recognized, and the potential 

for these processes to be involved in pathological disorders and degenerative diseases is receiving 

increasing consideration (Solovyev, 2015; Dominiak et al., 2016; Oggiano et al., 2018; Maass et al., 

2018; Solovyev, 2018). Since the only environmental or dietary insults known to compromise 

selenoenzyme activities in brain and endocrine tissues are high exposures to certain soft electrophiles, 

high exposures to metallic and organic soft electrophiles may affect fetal neurodevelopment, adult 

cardiovascular health, and could contribute to progressive illnesses and neurodegenerative diseases.  

As a result of its interactions with sulfur and Se, the best known of these toxic electrophiles is 

mercury (Hg). Elemental Hg (Hg0) was known to the ancients, and its toxic effects were familiar to 

Chinese and Roman physicians (Krebs, 2006). Early alchemists were also familiar with the reversible 



reaction that occurs between Hg and sulfur to form cinnabar (HgS) and the harmful outcomes that 

accompanied consumption of large amounts of cinnabar or prolonged exposures to Hg0 vapor. Toxic 

effects from high Hg exposures were encountered by those mining or working with it have been known 

for centuries, but the mechanisms of its toxicity involving sulfur-dependent delivery of Hg and its 

subsequent binding of Se (See Figure 1) were not recognized until recently.  

The path to understanding the toxicity of Hg and other soft electrophilic neurotoxicants began in 

1818, when Jöns Jacob Berzelius (1779–1848) described his discovery of selenium (Se) as a new element. 

Recognizing its similarities with sulfur as well as tellurium (named for the Earth), he named it after 

Selene, the Greek goddess of the moon (Trofast, 2011). Ironically, Se’s first suspected biological 

activities were mistakenly associated with toxicity. Livestock that grazed on “loco weed” plants (e.g., 

Astragalus bisulcatus) were known to become ill and demonstrate bizarre behavior. These plants 

hyperaccumulate Se, and although Se-toxicity (selenosis) does introduce defects in the structure of keratin 

in hooves and hair, it was not until much later that the adverse neurological effects that characterized this 

disorder were recognized as being due to swainsonine (Stegelmeier et al., 1995) and other alkaloids that 

these and related plants produce, not the Se they contained (Cheeke and Shull, 1985; O’toole and 

Raisbeck, 1995). The first beneficial role reported for Se was its ability to counteract the toxic effects of 

cadmium (Cd), an electrophile that damages endocrine tissues (Tobias et al., 1946; Kar et al., 1960). 

Selenium’s biological significance as a nutrient was first recognized in 1957 by Klaus Schwarz, who 

reported it prevented liver necrosis in vitamin E-deficient rats (Schwarz and Foltz, 1957). A year later, 

Se-deficiency was found to cause a lethal myopathy (white muscle disease) that afflicts livestock grazing 

in Se-poor pastures (Muth, et al., 1958). Pařízek and Oštádalová (1967) were the first to report that rats 

treated with otherwise lethal doses of mercury chloride (HgCl2) were saved when provided supplemental 

Se. Since then, the ability of Se compounds to decrease or abolish the toxicity of various forms of Hg has 

been established in all investigated species of mammals, birds, and fish (Whanger, 1992; Beijer and 

Jernelov, 1978; Friedman et al., 1978; Ohi et al., 1980) and described in comprehensive reviews by 



Cuvin-Aralar and Furness (1991), Gailer (2007), Bjørklund et al., (2017), Spiller (2017), and Ralston and 

Raymond (2018).  

 In addition to Hg, other soft electrophiles such cadmium (Cd), arsenic (As), and lead (Pb) are 

priority concerns in toxicology studies due to the adverse health effects associated with acute and chronic 

exposures. These and other soft electrophiles such as various molecular forms of silver (Ag) and gold 

(Au) share common characteristics such as chemical affinity to proteins and non-protein thiols and their 

ability to generate cellular oxidative stress (Ganther, 1980; Whanger 1985; Kinraide and Yermiyahu 

2007). The health effects of high exposures these soft electrophiles are diverse: kidney and liver damage, 

specific forms of cancer and irreversible neurological damage. Although the effects of exposures to 

elemental and organic forms of Hg on Se metabolism are increasingly well studied (See Spiller, 2017 and 

Ralston and Raymond, 2018 for recent reviews), the possibility that other soft electrophiles might impair 

selenoenzyme activities and contribute to adverse health effects has received little attention. Examining 

the possibility of cooperative effects among multiple electrophilic agents acting through the same mode of 

action is the goal of this article.  

On the occasion of the 200th anniversary of the discovery of Se, this review of electrophile 

interactions with Se-physiology examines Sec as the primary molecular target of Hg toxicity and suggests 

the possibility that concomitant exposures to other electrophiles may cooperatively contribute to 

selenoenzyme inhibition and Se sequestration. Since neurotoxic electrophiles tend to co-occur with other 

persistent bioaccumulative toxicants (PBTs), it is essential to differentiate their toxicokinetic effects, 

particularly when evaluating agents which cause similar neurological consequences even though the 

underlying dysfunctions may arise from independent actions on separate biochemical pathways. 

 

1.1 Selenium Physiology 

Selenocysteine, the 21st proteinogenic amino acid, is encoded in 25 genes which express unique 

selenoproteins which employ its nucleophilic selenolate in their active sites  (Gladyshev et al., 2004; 

Kryukov and Gladyshev, 2004). All vertebrate cells exhibit tissue dependent expression levels and 



distributions of these proteins, but their functions are particularly important in the brain and endocrine 

tissues which are preferentially supplied with Se during dietary Se restriction. Selenoprotein functions 

include; preventing/reversing oxidative damage, regulating calcium metabolism, controlling thyroid 

hormone status, guiding protein folding, supporting tubulin and actin polymerization, transporting Se, and 

creating the selenophosphate precursor required for Sec synthesis (See Table 1). For reviews of 

selenoproteins and their functions see; Reeves and Hoffman (2009), Köhrle and Gärtner, (2009), and 

Kühbacher et al., (2009), Reich and Hondal (2016), and for updated selenoprotein nomenclature, see 

Gladyshev et al., (2016). 

Selenocysteine is specifically encoded by the UGA codon (alternatively read as the opal stop 

codon) in coordination with a specific stem-loop structure in the 3’ untranslated region that interacts with 

the Sec Insertion Sequence (SECIS) element together with a unique tRNA[Ser]Sec that brings an 

aminoacylated serine residue to the ribosome. A high energy selenophosphate is used to displace the 

serine hydroxyl with a Se, thus forming Sec de novo during its cotranslational insertion into the 

polypeptide chain Leinfelder et al., 1988; Forchhammer et al., 1989; Berry et al., 1991; Hatfield and 

Diamond, 1993).  Because Se supplies to the brain are prioritized and thus protected from developing a 

Se-deficiency that would spontaneously lead to neurological damage, the only means of inducing Se-

deficiencies in brain tissues is either through genetic abolition of the transport and uptake proteins 

involved in homeostatic maintenance of Se in brain, endocrine, and placental tissues (Schomburg et al., 

2003; Burk et al., 2007; Burk et al., 2013), or through exposures to neurotoxic electrophiles (See sections 

1.2-1.3).  

With 10 Sec/molecule (in humans), selenoprotein P (SELENOP, the main Se transport protein in 

plasma) delivers Se to brain, endocrine, placental, and other preferentially supplied tissues in the body. 

Substantial fractions of the body’s total Se reservoir are cycled through this molecular form daily (Burk et 

al., 2005). A receptor protein that was first recognized for its ability to bind and internalize low-density 

lipoproteins from the plasma; apolipoprotein E receptor 2 (ApoER2), is now known to selectively bind 



and internalize SELENOP (Burk et al., 2007; Burk et al., 2013). Defects in ApoER2 metabolism have 

been recognized in relation to neurological disorders including Alzheimer’s Disease (Herz, 2009; Chin et 

al., 2008 Wang et al., 2017; Solovyev et al., 2018; Mata-Balaguer et al., 2018), antiphospholipid 

syndrome (de Groot and Derksen, 2005), as well as the most common psychiatric illness; major 

depressive disorder (Suzuki et al., 2010). Postmortem studies demonstrate intracellular SELENOP 

(Scharpf et al., 2007) colocalizes with Aβ plaques and neurofibrillary tangles in brains of Alzheimer’s 

disease patients (Bellinger et al., 2008; Rueli et al., 2015).  Because ApoER2 is expressed on surfaces of 

brain, placenta, and endocrine tissues, these tissues selectively capture and internalize SELENOP which 

subsequently resides within these cells as a readily accessible reserve of Se (Burk et al., 2007; Burk et al., 

2013). Although the brain is normally preserved from experiencing Se shortages, inactivation of 

SELENOP or ApoER2 genes in mice causes severe brain Se-deficiencies that result in neurodegeneration 

of cerebellum, thalamus, and hippocampus regions, resulting in impaired motor functions, sensory 

abilities, and learning behaviors, respectively. However, these consequences can be prevented by Se-rich 

diets that maintain brain Se at levels capable of supporting normal levels of selenoenzyme synthesis 

(Burk et al., 2007, Hill et al., 2003, Valentine et al., 2008; Caito et al., 2011). Behavioral disorders have 

been observed in SELENOP knockout mice, with male mice being more vulnerable than females (Raman, 

et al., 2012).  

Normal metabolic production of reactive oxygen species (ROS) such as hydrogen peroxide 

(H2O2) or free radicals such as hydroxyl radicals or superoxides are natural components associated with 

cell signaling pathways, but excessive production of these agents cause oxidative stress and damage 

(Pacher et al., 2007). Since peroxides are reactive species, rapid detoxification is required to prevent the 

oxidative damage they might otherwise cause. As detailed below, selenoenzymes such as the GPX’s or 

TXNRD’s regulate redox state and prevent as well as reverse oxidative damage. The generalized 

reactions shown in Equation 1 reflect the glutathione (GSH)-dependent reduction of lipid peroxides or 

H2O2 to alcohol and water by GSH resulting in formation of glutathione disulfide (GSSG). Glutathione 

reductase catalyzes reduction of GSSG back to 2GSH in the presence of NADPH (Flohé 1989). 



 

Equation 2 shows the generalized reaction between oxidized protein disulfides and other free radicals 

being reduced to thiols by the vicinal thiols of thioredoxin (Trx), resulting in an intramolecular disulfide 

(S2) which is reduced by TXNRD in the presence of NADPH.    

 

The five Se-dependent GPXs detoxify hydroperoxides using the selenolate (R-Se-) of their active site Sec 

to acquire a hydroxyl from the hydroperoxide, thus releasing a water molecule, then displace the hydroxyl 

with a GSH to release another water molecule. The resulting Sec-SG adduct is released by interacting 

with a second GSH which reduces the Sec to selenolate while forming GSSG which is subsequently 

restored to 2 GSH by glutathione reductase. Thioredoxin reductase (TXNRD) is named for its first 

recognized biochemical substrate; oxidized thioredoxin (Trx), but TXNRDs reduce a broad range of 

substrates including; hydrogen peroxide, selenite, lipoic acid, ascorbate, ubiquinone, and dietary 

polyphenols (Arner and Holmgren, 2000). The functions of TXNRD and other selenoenzymes are 

intimately connected with vitamin E since they both protect against lipid peroxidation (May et al., 2002). 

It is suggested that once vitamin E has quenched a radical species in lipid bilayers, it requires vitamin C 

(ascorbic acid) to restore it to its active form, thus forming dehydroascorbic acid which is acted upon by 

TXNRD to reform ascorbic acid (May et al., 1997). Since many of its substrates are important cellular 

antioxidants themselves, the activities of TXNRD are crucial in preserving the intracellular reducing 

environment required for normal metabolism. Although less well characterized, SELENOF, SELENOH, 

SELENOM, SELENOO, SELENOS, SELENOT, SELENOV, SELENOW, SELENON, and SELENOK 

appear to have oxidoreductase capabilities (See Table 1), thus it is reasonable to expect that they may 

similarly interact with thiomolecules.  



Although not a selenoprotein, selenocysteine lyase is an important aspect of Sec metabolism since 

selenoprotein levels in the cell are determined by rates of degradation as well as their rates of synthesis. 

Selenoprotein half-lives can be as short as minutes, or as long as several days, but eventually the molecule 

will become damaged, marked for retirement and degraded to its component amino acids. However, Sec 

cannot be reused in subsequent cycles of protein synthesis since it must be recreated de novo immediately 

prior to incorporation. Regardless of whether a Sec residue originates from recently digested food or from 

an endogenous source, once a Sec residue is released, Sec lyase catalyzes liberation of inorganic Se. The 

released Se is almost immediately reduced to selenide, the substrate required for SEPHS2 activity (Xu et 

al., 2006; Kim et al., 1997; Ogasawara et al., 2005; Carlson et al., 2004) through reactions which are 

presumed to be mediated by intracellular thiols (Painter, 1941; Ganther, 1968; Ganther 1971; Ganyc and 

Self, 2008). The selenide substrate is taken up selenophosphate synthetase (SEPHS2) which forms the 

high energy selenophosphate used to displace the OH of a in Sec biosynthesis during its co-translational 

incorporation into a nascent selenoprotein (Mihara et al., 2000).  

Oxidative damage is a focal aspect of the pathologies that accompany Parkinson's disease, senile 

and drug-induced deafness, schizophrenia, and Alzheimer's (Floyd, 1999; Dominiak et al., 2016; Pillai et 

al., 2014; Solovyev et al., 2018). Since the characterized functions of more than half of the 

selenoenzymes (See Table 1) involve detoxification, prevention, and reversal of oxidative damage, their 

roles in neurological, endocrine, cardiovascular, and other disease processes are being investigated 

(Sanmartin et al., 2011; Ruszkiewicz and Albrecht 2015; Solovyev et al., 2018).  

Disruption of brain Se homeostasis arising from inherited, acquired, or degenerative neurological 

disorders would be associated with dysregulation of redox state and increased oxidative damage in the 

affected tissues. Potentially predisposing genetic differences in selenoenzyme regulation and biosynthetic 

pathways that affect their vulnerability to soft neurotoxic electrophiles are additional areas of 

investigation. Further work in this area may reveal novel etiological initiators and pathological pathways, 

improve diagnosis, enhance pharmaceutical treatments, and improve the prognosis of certain 

neurological, cardiovascular, and endocrine conditions. 



 

1.2 Selenium Interactions with Soft Electrophiles 

Although the physical and chemical properties of sulfur and Se are similar in many respects, Se is more 

readily oxidized and kinetically labile, with biochemical forms which are more reactive than their sulfur 

analogues (Reich and Hondal, 2016). With a pKa of ~8.3, Cys is largely protonated at physiological pH 

while the pKa of Sec is ~5.2. Therefore, it is almost exclusively in the anionic selenolate (R-Se-) form 

which is recognized as the most powerful soft nucleophile in the cell (Arner, 2010; Wessjohann et al., 

2007). This enables Sec to catalyze reactions that cannot be reproduced by Cys analogues, but the same 

characteristics that enable it to perform these reactions also make it uniquely vulnerable to binding by a 

variety of metallic and organic toxicants.  

Soft electrophiles are positively charged metallic or organic molecules with electron-poor centers 

that readily react with nucleophilic chalcogens (Group 16 elements of the periodic table such as sulfur or 

Se) to form covalent bonds. Chalcophiles are elements that react with chalcogens to form sulfides or 

selenides. They include copper (Cu), lead (Pb), zinc (Zn), Cd, molybdenum (Mo), Hg, Antimony (Sb), tin 

(Sn), thallium (Tl), technetium (Te), arsenic (As), silver (Ag), gold (Au), and can also include certain 

other noble metals (Lee 2016). In addition to electron poor metals, a wide variety of organic electrophiles 

including environmental toxicants (e.g., γ-diketones, quinones, unsaturated aldehydes), industrial 

pollutants (acrolein, acrylonitrile, methylvinyl ketone), drug metabolites (e.g., acrolein metabolite of 

cyclophosphamide), dietary contaminants (e.g., acrylamide), and  endogenously generated type-2 alkenes 

(e.g., acrolein, 4-hydroxy-2-nonenal) are known to induce cell damage, quite possibly by interacting with 

electron rich nucleophiles (Martyniuk et al., 2011, LoPachin et al., 2012, LoPachin and Gavin 2012a, 

LoPachin and Gavin, 2012b, Martyniuk et al., 2013, Zhang et al., 2013, LoPachin and Gavin 2014, 

Kosharskyy et al., 2015). Certain pharmaceuticals employ soft electrophiles such as platinum- and Au-

containing compounds to interact with Sec and thus inhibit the thioredoxin system (Ouyang et al., 2018).  

Unsaturated carbonyls of these soft electrophiles form covalent adducts with nucleophilic Cys 

sulfhydryls, but are likely to have even higher affinities for selenolates of Sec. While all electrophiles 



have the potential to interact with nucleophiles, the interactions between Se and Hg in their various forms 

are the best characterized. Although the selenoreactivity of organic or metallic soft electrophiles other 

than Hg are less well studied, information regarding Hg-Se interactions may provide insights regarding 

effects of high exposures to other metallic chalcophiles and organic electrophiles.   

Mercury’s association constant for sulfide is high (1039), but its affinity for selenide (Ka = 1045) is 

~1 million-fold higher (Dyrrsen and Wedborg, 1991). However, methylmercury (CH3Hg+) affinities for 

the thiol (~1016) of Cys (Webb, 1966), vs. its affinity for Sec (estimated to be ~1018) are insufficient to 

overcome the mass action effects of the ~105 higher intracellular abundance of thiols, thus >95% of 

intracellular CH3Hg+ is usually found associated with sulfur (Huggins et al., 2009). If not for the direct 

interactions that occur between thiomolecules and selenoenzymes, the small difference in their CH3Hg+ 

binding affinities would result in little redistribution of CH3Hg+ from Cys to Sec. However, because 

thiomolecules such as GS-SG and Txr-S2 are selenoenzyme substrates (see Equations 1 and 2), they carry 

Hg or other electrophiles (E) GS-E-SG, Trx-(S2-E) into close proximity with the Se of Sec in enzyme 

active sites, expediting formation of E-Sec.  

Although organic and metallic soft electrophiles will all interact with chalogens and subsequently 

inhibit selenoenzymes, the best characterized of the neurotoxic electrophilic metals is Hg. Selenium is 

present in most tissues at ~1 µM, and exposures to Hg in quantities sufficient to approach or exceed 

stoichiometric equivalence is sufficient to inhibit tissue activities of GPX (Prohaska and Ganther, 1977; 

Black et al., 1979; Hirota et al., 1980; Oh and Lee, 1981; Chang and Suber, 1982; Chung et al., 1982; 

Eide and Severson, 1983: Hirota 1986; Nielsen et al., 1991; Watanabe et al., 1999a; Seppanen et al., 

2004; Bulato et al., 2007; Franco et al., 2009: Grotto et al., 2009; Branco et al., 2012; Penglase et al., 

2014; Ralston and Raymond 2015a; Branco et al., 2017), TXNRD (Carvalho et al., 2008; Branco et al., 

2012; Carvalho et al., 2011; Branco et al., 2014; Ralston and Raymond 2015a; Branco et al., 2017), 

and/or DIO (Watanabe et al., 1999b). The magnitude of effects of exposures to As, Cd, or Hg has greater 

impact on mitochondrial TXNRD2 than cytosolic TXNRD1 (Hansen et al., 2006; Branco et al., 2014;). 

Although TXNRD activity can be inhibited by processes unrelated to Se-sequestration and selenoenzyme 



inhibition (e.g., Citta et al., 2012), interactions of Se with soft electrophiles such as Cd form covalent 

adducts which may not be as strong as with Hg, but are similar in character (Melnick et al., 2010). 

Certain pharmaceutical agents employ soft electrophiles such as platinum- and Au-containing compounds 

to inhibit the thioredoxin system (Ouyang et al., 2018).  

Once a soft electrophile becomes bound to the thiol of a Cys residue of GSH, Trx, or other 

substrate or cofactor which directly interacts with the Sec of these selenoenzymes, the thiomolecule acts 

as a suicide substrate (Ralston et al., 2015, Ralston and Raymond 2015b, Ralston and Raymond 2018). 

Because the selenoenzyme orients the substrate to bring the thiol into proximity with the selenolate to 

accomplish the enzyme reaction, a thiol which carries a soft electrophile adduct will enable its transfer to 

the nucleophilic selenolate to form a covalent bond, which by biochemical definition irreversibly inhibits 

the enzyme. Although CH3Hg+ entered the active site linked to a Cys, it will transfer to the Sec of the 

selenoenzyme and remain bound. Upon degradation of the inactivated enzyme, the CH3Hg-Sec form is 

sufficiently stable to persist intact in tissues and may be excreted from the body in that form, but the 

bound Se is unavailable for participation in Sec synthesis. The rate of selenoenzyme activities in various 

tissues appear likely to contribute to the transfer of various soft electrophilic metallic or organic 

electrophiles from thiols to the Sec of selenoenzymes such as GPX, TXNRD, and/or other oxidoreductase 

selenoenzymes. 

While the inorganic forms (Hg+, Hg2+) are less able to cross membranes, they are poorly absorbed 

during digestion and encounter similar barriers at the placental or blood-brain interface. In contrast, Hg0 

vapor is readily absorbed and transported throughout the body until it is oxidized intracellularly by 

catalase to Hg+ (Clarkson and Magos, 2006), a form which binds with thiols to form a potent suicide 

substrate (e.g., Cys-Hg+) that readily interacts and bind with Sec. Because HgSe is chemically resistant to 

all acids other than aqua regia, Se in this form remains permanently retired from biological processes. 

Irreversible inhibitors of enzymes typically form covalent complexes that eventually decompose during 

degradation of the protein, if not before. But with HgSe, the irreversible inhibition of the enzyme involves 

formation of a truly irreversible complex, one with the potential to persist for geological epochs.      



Because CH3Hg-Cys biochemically resembles methionine and other neutral amino acids that the 

LAT1 amino acid transporter binds and moves across membranes (Simmons–Willis et al., 2002), it is 

readily distributed between maternal/placental/fetal brain compartments (Aschner and Clarkson, 1988; 

Aschner, 1989; Aschner and Clarkson, 1989; Bridges and Zalups 2010). Since CH3Hg-Cys mimics 

essential amino acids, it is retained in tissues and only slowly excreted, persisting and accumulating in 

aquatic food chains in quantities that depend on the age, size, and trophic level. 

Among highly exposed individuals, a blood Hg level of 1 µM is associated with toxicity and 2.5 

µM results in severe toxicity (Clarkson and Magos, 2006). Since these amounts are ~equimolar with the 

1-2 µM concentration of Se in blood and body tissues, they are stoichiometrically consistent with current 

understanding of the mechanisms of CH3Hg+ toxicity occurring as a consequence of selenoenzyme 

inhibition and Se-sequestration (Carvalho et al., 2008; Ralston and Raymond, 2010; Branco et al., 2012; 

Carvalho et al., 2011; Ralston et al., 2015; Branco et al., 2017; Ralston and Raymond 2018). Although 

Se’s protective effect against Hg toxicity was first noted over 50 years ago (Pařízek and Oštádalová, 

1967), the significance of this finding was initially overlooked and generally misunderstood. The “Se-

protective effect” was thought to involve Se binding to Hg, sequestering it in a stable form that could no 

longer harm important biomolecules. However, Se is the biochemical “target” of CH3Hg+ toxicity, and 

selenoenzymes are the important biomolecules that are harmed by high Hg exposures (Ralston and 

Raymond 2007; Ralston et al., 2008; Carvalho et al., 2008; Ralston and Raymond, 2010; Ralston et al., 

2014; Spiller, 2017; Spiller et al., 2017 Ralston and Raymond 2018).  

Although brain Se availability is normally preserved at optimal levels, there are indications that 

certain neurological disorders may involve defects in Se distribution to the brain or impaired availability 

of Se for selenoenzyme synthesis. Children with intractable seizures were found to have low glutathione 

peroxidase (GPX) activities that were indicative of poor Se status (Weber et al., 1991), but following 

dietary Se supplementation, their clinical condition improved. This was a small study and the effect of 

additional dietary Se on the blood GPX of the children was not reported, so further work would clearly be 

needed to confirm the findings and identify any underlying cause or causes that may have impaired their 



Se-status. However, cerebral Se deficiency is associated with neurological phenotypes including ataxia 

and seizures (Wirth et al., 2010), apparently in relation to loss of GPX4 in parvalbumin expressing 

neurons. It is important to note that although Se-deficient diets could result in low blood GPX activities, 

the availability of Se in the brain is usually almost impossible to diminish below optimal levels, so the 

resolution of the children’s clinical symptoms by dietary Se supplementation may have been mistakenly 

attributed. On the other hand, genetic defects that impair Se absorption, distribution, or metabolism could 

contribute to functionally diminished Se-status of neurological tissues (Raymond et al., 2014), and the 

possibility of increased Se-attrition due to exposures to soft electrophiles causing Se-sequestration should 

also be considered.  

Sources and times of soft electrophile exposures are seldom clearly identified, but a recent case 

involving a patient exposed to large amounts of Hg0 vapor following a substantial spill of liquid Hg is 

informative (Spiller, 2017). After ~3 weeks of exposure, the patient developed hypertension and weight 

loss, experienced muscular, testicular, and abdominal pain, and suffered insomnia, delusions, 

hallucinations, tachycardia, palmar desquamation, diaphoresis, tremor, and increasingly severe ataxia 

leading to hospitalization. Supplementation with 500 µg Se/day (~0.1 µMol/kg BW) and 50 mg of N-

acetylcysteine per day was initiated. Within 3 days, he showed noticeable improvement, and by day 11, 

delusions, delirium, tachycardia, and abdominal pain had resolved. After 3 months, all symptoms had 

resolved except hypertension. In the following 2 months, he regained lost body weight, hypertension 

relented, and he returned to normal athletic activities. Although Se supplementation continued for 8 

months, the patient’ serum Se levels did not become elevated, suggesting his tissues had a significant Se 

deficit, possibly due to continued Se sequestration as HgSe that accumulate in cellular lysosomes and 

exhibit long term retention, especially following toxic exposures (Korbas et al., 2010). However, so long 

as tissue Se availability is sufficient to support brain selenoenzyme activities, high levels of HgSe can 

accumulate in brain and body tissues without adverse consequences (Falnoga et al., 2006).  

Evaluating the risks of adverse neurodevelopmental outcomes associated with prenatal exposures 

to soft electrophiles requires consideration of the molar relationships between toxicants and the Se 



available from maternal tissues and dietary Se sources. This is particularly important to note in 

understanding outcomes of epidemiological studies of the effects of maternal CH3Hg+ exposures from 

seafood consumption on fetal neurodevelopment. Conflicting interpretations based on opposing effects 

observed in studies of sentinel populations high Hg exposures from seafood consumption have been 

difficult for regulatory agencies to resolve in making policy decisions. However, these conflicts are 

largely eliminated once the differences in Hg-Se molar relationships between CH3Hg+ and Se in the 

seafoods consumed by these populations is examined.  

 

1.3 Epidemiological Studies of Soft Electrophile Exposures 

The CH3Hg+ poisoning incidents of epidemic proportions which occurred in Japan during the 1950’s were 

lethal to many highly exposed adults and revealed the exceptional vulnerability of the developing fetal 

brain (Clarkson and Magos, 2006). Accentuated fetal vulnerability was first observed in association with 

catastrophic poisoning events in Minamata, Japan where 75-150 tons of Hg from factory effluents had 

been dumped into the enclosed confines of the local bay. The contaminated fish that were consumed had 

Hg concentrations as high as 50 mg/kg (Takeuchi and Eto, 1999). The accentuated sensitivity of the 

developing fetus to maternal CH3Hg+ exposures were confirmed following a poisoning event in Iraq 

which involved bread prepared from seed grain which had been treated with CH3Hg+ as an antifungal 

agent. Many adults were poisoned, but once again it was observed that the children of pregnant women 

that were highly exposed to CH3Hg+ would often suffer severe brain damage, even in cases where the 

health of the women themselves had not been noticeably affected. Although catastrophic exposures to 

high amounts of Hg are extremely rare occurrences, low level exposures are ubiquitous and almost 

generally without adverse effects.  

Findings reported by studies in New Zealand (Crump et al., 1998), and the Faroe Islands 

(Grandjean et al., 1997; 1998) were indicative of subtle, subclinical harm from CH3Hg+ exposures. In 

contrast, studies performed in the Seychelles showed no harmful effects, even though the Seychellois 

consume ~12 ocean fish meals per week and had total CH3Hg+ exposures that were higher on average 



than those of the Faroes population (Van Wijngaarden et al., 2006). Due to the perceived discrepancies in 

their findings there was considerable controversy regarding which study should be used to generate 

regulatory policy. To err on the side of caution, the risk assessors from US EPA chose to use the Faroe 

Islands study to establish the maternal reference dose (Rfd) of 0.1 µg/kg body weight/day, although these 

values incorporated 10-fold uncertainty multipliers which were established based on risk management 

guidelines, rather than on estimates of effect thresholds. 

Because of the recognized risks associated with the extremely high Hg and PCB contents of the pilot 

whale meats, seafood safety recommendations in the Faroes currently advise against anyone eating pilot 

whale meats. However, since increasing ocean fish consumption was found to protect against the adverse 

effects associated with Hg exposures from pilot whale consumption, the ministry of health in the Faroes 

encourages maternal consumption of ocean fish during pregnancy (Weihe and Debes-Joensen, 2012). 

Current U.S. EPA guidelines apply criteria from the Faroes study data which are based on fish Hg 

contents (EPA-FDA, 2017), although they are aware of the neurodevelopmental benefits of ocean fish 

consumption which suggest the need for updates to the advisory and have funded work to develop a more 

reliable seafood safety criterion known as the Health Benefit Value (HBV). The HBV incorporates the 

total Hg and Se present in the seafood, providing an index which is positive if the food provides more Se 

than Hg, and negative if the food provides more Hg than Se (Kaneko and Ralston 2007, Ralston et al., 

2016). It is calculated using the following equation: 

 

HBVSe = ((Se – Hg)/Se) • (Se + Hg)     (Equation 3.) 

 
 

Average prenatal CH3Hg+ exposures were actually higher in the Seychelles than in the Faroe 

Islands study, but no adverse associations were found between CH3Hg+ and 21 health endpoints that were 

measured (Davidson et al., 2011). Instead, increasing prenatal CH3Hg+ correlated with improved scores 

on neurological endpoints as well as fewer instances of substance abuse or problematic behaviors in 



school. Furthermore, increasing maternal seafood consumption was associated with 4-6 points of child IQ 

benefits in the United Kingdom (Hibbeln et al., 2007) and ~10 IQ points in the United States (Lederman 

et al., 2008), even though CH3Hg+ exposures were greatest among mothers with the highest seafood 

intakes. Epidemiological studies have consistently found that increasing Hg exposures from ocean fish 

consumption during pregnancy results in substantial neurological benefits rather than diminishments in 

their health and that of their children (Hibbeln et al., 2007; Davidson et al., 2011; Myers and Davidson, 

1998; Avella-Garcia and Julvez, 2014; Julvez et al., 2016, Llop et al., 2017; Golding et al., 2017). 

However, it is clear that increased Hg exposures are not responsible for the beneficial outcomes which 

have been observed. Instead, improved neurological development, motor development, verbal 

intelligence, perception, social behavior, reduced inattention and diminished hyperactivity appear likely to 

be due to improved dietary intakes of nutrients provided by ocean fish. A partial attenuation of these 

positive associations was noted in the highest seafood intake category (Davidson et al., 2011; Avella-

Garcia and Julvez, 2014), but it is uncertain whether CH3Hg-Cys was actually responsible for the slight 

decrease in the net beneficial effects, or if exposures to other persistent bioaccumulative toxicants (PBTs) 

from seafood may have been responsible and that blood Hg was simply a surrogate measure of those 

exposures.  

In the ALSPAC study performed in the United Kingdom, children of mothers who complied with 

the U.S. EPA reference dose (RfD) for CH3Hg+ exposure from fish consumption were at substantially 

increased risk of scoring in the lowest quartile for verbal IQ, compared to children whose mothers had 

exceeded the recommended fish intake (Hibbeln et al., 2007). Maternal compliance with diminished fish 

consumption also increased children's risks for pathological scores in fine motor, communication, and 

social skills. The findings of these studies suggest that so long as dietary Se is in molar excess of CH3Hg+ 

exposure, Hg is not associated with adverse effects. However, diminished maternal consumption of ocean 

fish during pregnancy causes more harm than had been associated with Hg exposures from consumption 

of pilot whale meats in the Faroes Islands Study. These findings agree with outcomes of animal studies 

which found addition of ocean fish to experimental diets which contained otherwise toxic amounts of 



CH3Hg+ increased the total Hg exposure, but instead of thereby enhancing the severity of the toxicity, the 

supplemental Se from the fish meat protected against Hg toxicity (Friedman et al. 1978; El-Begearmi et 

al. 1982; Ohi et al. 1976, 1980; Stillings et al. 1974; Iwata et al. 1973; Sugiura et al. 1978; Zhang et al. 

1997; Ralston and Raymond, 2015). This appears to be due to the substantial increases in brain 

selenoenzyme activity which accompany Se from ocean fish offsetting the amounts lost to Hg-

sequestration, thus protecting against selenoenzyme impairments and oxidative damage that otherwise 

accompanied the lethally high amounts of CH3Hg that were present in the experimental diets (Ralston, 

2010).  

 Certain soft electrophiles are known to accumulate along with Hg in top predators. For example, 

the Cd contents of pilot whale liver and kidney meats eaten by Faroe Islanders were ~442 and ~674 

µmol/kg respectively. Furthermore, since pilot whales are the top of the marine food web, these meats 

(and also the blubber that these mothers consumed) were highly contaminated with PCBs as well as all 

other PBT’s. Since electrophilic metals such as Cd also impair selenoenzyme activities (Kar et al. 1960; 

Omaye and Tappel, 1975; Jamall and Smith,1985; Gambhir and Nath, 1992; Jamba et al, 2000; Pavlović 

et al., 2001; Abarikwu et al., 2013; Liu et al., 2014; Binte Hossain et al., 2018), exposures to Se 

sequestration agents would have been substantial among the Faroes population. Furthermore, electrophilic 

molecules with α, β-unsaturated carbonyls (e.g., acrylamide, acrolein) also bind thiols well (Lopachin and 

Barber, 2006; Lopachin et al., 2007a; 2007b). Thus, high exposures to certain organic agents that may 

have also been present in the pilot whale meat could have also contributed to selenoenzyme impairments, 

potentially causing or contributing to functional defects observed in Faroese children. 

 

2.0 EVALUATION OF HYPOTHESES 

Criteria for evaluating risks associated with CH3Hg+, Hg0, and/or other electrophile exposures need to be 

based on parameters that reliably predict their combined dose-effect relationships. Exposures to soft 

electrophiles should be minimized to minimize potential risks, and should be considered in relation to 

their discrete and aggregate effects on selenoenzyme activities. The Se status and dietary Se intakes of 



exposed individuals must also be considered in order to solve the bimolecular equations required to 

evaluate risks associated with exposures to these electrophiles. It is instructive to compare a series of 

working hypotheses regarding interpretations of exposure measures in relation to observed outcomes. 

Following the conventional hypothesis, subsequent hypotheses will indicate the differences between 

Hypothesis 1 and these alternatives by underlining the relevant text. The following hypotheses are 

informally worded for convenience and ease of reading: 

 

1) The conventional hypothesis: Maternal CH3Hg+ exposures are directly proportional to adverse 

effects on child neurodevelopmental outcomes.  

 

This hypothesis is the basis for current regulatory policy and seafood safety advisories in which risk 

assessments assume that Hg’s toxic effects are predictable using the pseudo-first order reaction 

assumption to evaluate its interactions with cellular thiols or lipids. If this hypothesis is true, predictions 

of risk can be based on Hg exposures alone.   

 

2) The Hg-dependent Se-sequestration hypothesis: Maternal CH3Hg+ exposures in excess of dietary Se 

intakes are directly proportional to adverse effects on child neurodevelopmental outcomes.  

 

Since adverse child outcomes associated with increasing maternal CH3Hg+ exposures have only been 

observed in populations which consume foods with negative HBV’s (in New Zealand and the Faroe 

Islands), this hypothesis assumes the adverse consequences which were observed were due to CH3Hg+ 

exposures alone.   

 

3) The combined electrophiles Se-sequestration hypothesis: Maternal exposures to CH3Hg+ and other 

soft electrophiles in cooperative excess of dietary Se intakes are directly proportional to adverse 

effects on child neurodevelopmental outcomes.  



 

Since bioaccumulation of CH3Hg+ is accompanied by accumulation of various other soft electrophiles in 

the aquatic food web, the effects attributed to CH3Hg+ may reflect consequences due to their combined 

effects on inhibition of selenoenzymes and sequestration of Se.    

 

4) The combined concomitant toxicants hypothesis: Maternal CH3Hg+ exposures and concomitant 

exposures to other persistent bioaccumulative toxicants (PBT’s) are directly proportional to adverse 

effects on child neurodevelopmental outcomes.  

 

Since CH3Hg+ accumulation is accompanied by coaccumulation of other PBT’s in an aquatic food web, 

the effects currently ascribed to CH3Hg+ exposures may actually reflect consequences due to other PBT’s, 

or the combined effects of other PBT’s, including, but not limited to inhibition of selenoenzymes and 

sequestration of Se.   

 

5) The surrogate measures hypothesis: Maternal CH3Hg+ exposures are surrogate measures of other 

persistent bioaccumulative toxicants (PBT’s) which concomitantly accumulate in parallel, and are 

independently directly proportional to adverse effects on child neurodevelopmental outcomes.  

 

Since CH3Hg+ accumulation would parallel accumulation other electrophiles and PBT’s in an aquatic 

food web, the effects attributed to CH3Hg+ exposures may be pathological consequences which are 

independent of Hg and other electrophiles and occur through separate biochemical pathways influenced 

by PBT’s acting independently.    

  

2.1 Evaluation of Hypotheses 

Hypothesis 1 has already been repeatedly disproved by the finding that instead of causing harm, 

increasing CH3Hg+ exposures are directly associated with improved social, scholastic, and IQ outcomes in 



children (Hibbeln et al., 2007; Davidson et al., 2011; Myers and Davidson, 1998; Myers et al., 2007; 

Avella-Garcia and Julvez, 2014; Julvez et al., 2016, Llop et al., 2017; Golding et al., 2017). Although 

these beneficial effects may be partially due to improved dietary Se intakes, they are more likely to result 

from enhanced access to long-chain omega-3, polyunsaturated fatty acids such as docosahexaenoic acid 

(DHA) in concert with other essential nutrients obtained from ocean fish. 

The discovery that adverse effects reported in association with seafood Hg exposures were only 

observed in populations that consumed pilot whale meats (HBV= -80) in the Faroe Islands, or great white 

shark meats (HBV= -120) in New Zealand, while beneficial outcomes have been observed among 

populations that consume ocean fish with positive HBV’s supports hypothesis 2. However, other soft 

electrophiles such as Cd and a variety of additional metallic and organic soft electrophilic agents that 

concomitantly bioaccumulate in the marine food web were also present at high levels in the pilot whale 

and great white shark meats that were associated with adverse child neurodevelopmental outcomes. 

Therefore, hypothesis 3 is also consistent with the findings of the present studies, but further evaluations 

must be performed to establish the magnitudes of potential Se-sequestration contributions by the other 

soft electrophiles. Hypothesis 4 reflects the challenge that all epidemiological studies confront when 

attempting to identify and apportion potential causality to individual variables when multiple concomitant 

confounders are present.  

Hypothesis 5 considers the possibility that instead of making a causal contribution to the adverse 

outcomes reported in epidemiological studies associated with seafood consumption, Hg may simply be a 

surrogate measure of PBT exposures. While maternal exposures to CH3Hg+ and other metallic and 

organic soft electrophiles in the Faroe Islands and New Zealand studies may have been sufficient to 

impair Se and subtly diminish fetal neurodevelopment as seen in their findings, it is also possible that 

other agents were responsible for the effects which were observed. Since the amounts of Hg observed in 

maternal hair or cord blood would be highly correlated with maternal/fetal exposures to all other PBTs, 

Hg measurements may simply serve as a surrogate measure of those other exposures. If adverse outcomes 



arose due to exposures to any other PBTs, some which may currently remain unidentified, we should seek 

to detect and identify the actual causal agents.  

Some notably neurotoxic agents are naturally occurring and already known to occur in seafoods. 

Although their potential contributions to neurodevelopmental diminishments currently remain undefined, 

they may present a concrete example of hypothesis 5 in action. For example, in the Seychelle Islands 

Study, there was a substantial improvement in child outcomes associated with omega-3 fatty acid intakes, 

but after correcting for these beneficial effects, a subtle decline in neurodevelopmental outcomes that 

correlated with fetal CH3Hg+ exposure remained evident. However, since the fish consumed in the 

Seychelles have positive HBV’s, this consequence may not have been due to CH3Hg-dependent Se-

sequestration. Instead, this may be another case of Hg acting as a surrogate measure of exposure to other 

PBTs which are present. The seafoods eaten in the Seychelles were primarily reef fish, which 

bioaccumulate less CH3Hg+ than pelagic fish (e.g., tuna). However, coral reefs are populated with 

dinoflagellates such as Gambierdiscus toxicus that produce ciguatoxin (CTX), a naturally occurring 

toxicant capable of causing gastrointestinal, cardiac, and neurologic symptoms in consumers (Friedman et 

al, 2017). They are naturally present in the reef ecosystem, growing on the coral, algae, and seaweed at 

the base of the food web. Although it has no apparent effect on fish, CTX bioaccumulates at the highest 

levels among top predators of the reef ecosystem and is a notable toxicant that affects fish consumers and 

has potentially serious, long lasting adverse neurological effects among those with high exposures. 

Maternal exposures to low levels of CTX is continual among consumers of reef fish, but the effects of 

such exposures on fetal development remains unexamined. However, similar to other toxic agents, 

enhanced vulnerability of the developing fetal brain may be characteristic of its effects. Therefore, it 

remains unclear whether the effects which correlate with Hg exposures in the Seychelles actually reflect 

the effects of CTX or any other PBT’s that coaccumulate in the reef food web.  

 

3.0 DISCUSSION AND CONCLUSIONS 



Recognition of the biochemical mechanisms of toxicity of Hg toxicity provides insights into the toxic 

effects of other metallic and organic electrophiles and may provide a more consistent basis for risk 

evaluations. The conventional hypothesis of Hg toxicity risks during fetal development has been 

displaced by more comprehensive concepts which may enable identification of discrete and combined 

effects of toxicants. Since concomitant exposures to the numerous forms of metallic and organic soft 

electrophiles is continual throughout life, the potential for aggregate effects of these agents contributing to 

neurological, endocrine, cardiovascular, and other disease processes is worth investigating. However, the 

marked vulnerability of the developing fetal brain to Hg indicates maternal exposures to soft electrophiles 

is a more urgent issue.    

 Although neuron growth in the fetal brain is a nonlinear process, if averaged throughout 

pregnancy, it has been estimated that production of the ~100 billion neurons which are the normal 

complement of a newborn child would require creation of ~250,000 cells per minute (Ackerman, 1992). 

However, because neuron generation does not begin until ~40 days after conception and thereafter 

undergoes geometric doubling until ~day 125 in humans, there are times when nutrient deficiencies or 

toxicant exposures may be expected cause greater harm. The neonatal brain comprises ~10% of the 

child’s total body weight (Jordaan, 1976), but accounts for 25% of total metabolic activity, (Holliday, 

1971) and is ~50% lipid by weight (Wainwright 2002), predominantly polyunsaturated long-chain fatty 

acids including omega-3 fatty acids such as docosahexaenoic acid (DHA) synthesized from precursors or 

received preformed from the maternal diet (Diau et al., 2005). Since humans have limited abilities to 

synthesize DHA from precursors, if maternal dietary sources are insufficient, DHA ends up being taken 

from the mother’s brain and redistributed to supply the needs of the child’s developing brain, possibly 

contributing to postpartum depression and other maternal maladies.  

Most U.S. women know that ocean fish contain Hg, are aware that Hg is a neurotoxin, and many 

receive advice to limit their fish intake during pregnancy (Bloomingdale et al., 2010). Far fewer women 

know that fish contains DHA, the importance of DHA is in the brain, or that increased ocean fish 

consumption is associated with improved maternal and fetal health. Since few women are told of the 



health benefits associated with eating more ocean fish, but most are aware of advice to limit fish intake, 

many choose to avoid fish rather than risk harming their child. Pregnant women would be willing to eat 

more ocean fish if their obstetricians advised them to do so, or if they had ready access to a reference 

indicating which varieties are safe and beneficial to eat (Bloomingdale et al., 2010). 

Freshwater fish are far more variable in their Hg and Se contents. Fish from Se-poor watersheds 

bioaccumulate more CH3Hg, thus increasing total Hg exposures while simultaneously increasing the risks 

associated with those exposures since Se-poor fish do not provide consumers with sufficient Se to offset 

Hg-dependent losses due to Se-sequestration. Therefore, subsistence consumers of low-Se, high-CH3Hg+ 

fresh water fish are at significantly accentuated risk. As blood Hg increased among subsistence freshwater 

fish consumers in the Amazon, their motor function diminished. However, increasing Se status was 

protective (Lemire et al., 2011). Since, locally grown foods in Se-deficient regions of the world may fail 

to provide adequate Se, the risks from exposures to other metallic or organic electrophiles (e.g., Ali et al., 

2014) may cooperatively accentuate risks associated with toxic CH3Hg+ exposures. Risk assessments 

based on CH3Hg+ exposures of a population without consideration for their concomitant exposures to 

additional soft electrophiles or the pivotal importance of the Se-status of the exposed populations will fail 

to adequately identify risks or predict the effects of the soft electrophiles which are present. Suggesting 

hazards are present when none exist, or failing to recognize the accentuated risks among populations 

which are more vulnerable to soft electrophile exposures due to poor Se-status are unacceptable errors.   

 

3.1 Conclusions 

This review has examined over 50 years of research progress in identifying Se interactions with 

soft electrophiles. The focus has been on the loss of redox control that can arise from high exposures to 

soft electrophiles which dysregulate selenoenzyme metabolism and it is clear that risks of high exposures 

to metallic and/or organic soft electrophiles need to be assessed in relation to dietary Se intakes. While 

effects of concomitant exposures to soft electrophiles are expected to be additive, the possibility of 

adverse synergies from certain mixtures of toxic agents are also conceivable. Improved understanding of 



the biochemistry and toxicology of organic and metallic soft electrophiles have clear implications for risk 

assessment research, policy, and regulations.  
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Figure 1. Figure 1. The symbols for mercury and sulfur originate from the era of the early 

alchemists. The “horns” of the mercury symbol actually indicate the winged helmet of the 

Roman god Mercury, and the triangle of the figure denoting sulfur originally symbolized “fire” 

from which sulfur was believed to originate. The alchemists were not aware of selenium, so its 

symbol is a recent creation. The symbols are used to depict the initial formation of the mercury-

sulfur conjugated thiomolecule which brings the mercury into close proximity with the selenium 

of the selenoenzyme, resulting in mercury’s association with the thiol being exchanged for the 

selenoate. Other soft electrophiles would similarly bind to sulfur initially and subsequently be 

transferred to form a covalent adduct with selenium. 

 



Table 1. Mammalian selenoprotein gene names, locations, and functions1 

 

 Subcellular      Tissue                   

Name           Location      Location          Functions Comments                                                                                      .     

 

DIO1 ER  Th, K, L Activates/inactivates TH 3,5,3'-triiodo-L-thyronine + I- + A + H+ = L-thyroxine + AH2 

DIO2 memb Th, E, B, llUb. Activates thyroid hormone Provides brain with T3 during development 

DIO3 endo, memb U, Pl, B, Fe Deactivates thyroid hormone Important in regulating thyroid hormone status in fetus 

GPX1 cyto2         Ub, B, F   Detoxifies peroxides   H2O2 + 2 GSH → GSSG + 2 H2O     

GPX2 cyto Gb, St, C, llUb   Detoxifies peroxides H2O2 + 2 GSH → GSSG + 2 H2O 

GPX3 plasma K, llUb,→Pl     Se transport to/from body tissues Secreted into plasma to redistribute Se to somatic tissues. 

GPX4 memb, cyto Ub, B, T         Phospholipid peroxidase  H2O2 or fatty acid peroxides + 2 GSH → GSSG + 2 H2O or fatty acid 

GPX6 secreted (?)  ll, F  Detoxifies peroxides H2O2 + 2 GSH → GSSG + 2 H2O  

MSRB1 Nu, cyto Ub, K, L Reduces Met-R-sulfoxides  Promotes actin polymerization, Zn2+ cofactor 

SELENOF ER Ub, Th                  Oxidoreductase (?)                          May assist in disulfide formation and protein folding 

SELENOH Nu            Ub               Oxidoreductase (?)                         Promotes mitochondrial biogenesis 

SELENOI (?)              Ub, B, S, SI           Ethanolamine-P-transferase 1         Synthesizes phosphatidylethanolamine 

SELENOK ER  Ub, A, H, T           Oxidoreductase (?) Functions in T-cell proliferation, involved in calcium regulation 

SELENOM ER, Gg Ub, Pr, B, En Oxidoreductase (?) May participate in disulfide bond formation  

SELENON ER Ub Oxidoreductase (?) Regulates redox-related calcium homeostasis 

SELENOO mito Ub Oxidoreductase (?) Largest mammalian selenoprotein 

SELENOP plasma Ub, B, L,→Pl     Primary Se transporter in plasma  10 Sec/molecule in humans, delivers Se to brain, placenta, etc.    

SELENOS ER Ub, B, T Participates in detoxification May be involved in controlling inflammation 

SELENOT ER (?) Ub, A, B, Th Oxidoreductase (?), Ca+ release Protects dopaminergic neurons against oxidative stress 

SELENOV (?) T, Th, B, Pr GPX/TXNRD activities Member of the SELENOW protein family 

SELENOW cyto Ub; H, B Oxidoreductase (?) May regulate redox state of 14-3-3 proteins in brain 

SEPHS2 cyto Ub Forms Se-phosphates  Creates high energy precursor required for synthesis of Sec 

TXNRD1 cyto   Ub, B, A, Gb         Reduces Trx, glutaredoxin, etc.       Induces actin and tubulin polymerization 

TXNRD2 mito          Ub, B, A, Pr Reduces Trx, glutaredoxin, etc. Trx + NADP+ → Trx disulfide + NADPH (FAD cofactor) 

TXNRD3 N, ER (?) Ub, T                    Reduces Trx, glutaredoxin, etc. GSSG reductase, also catalyzes disulfide bond isomerization 

 

 
1Information presented in this table was compiled from: Aachmann et al. 2007; Dikiy et al. 2007; Gao et al. 2007; Gereben et al. 2008; Gladyshev et 

al. 2004; Gromer, 2005; Labunskyy et al. 2009; Linster and Van Schaftingen, 2007; Lu, et al. 2006; Moghadaszadeh and Beggs 2006; Reeves et al., 

2009; Reeves et al., 2010; Shchedrina et al. 2010 and UniProt Knowledgebase/National Center for Biotechnology Information. Information 

regarding the tissue location, subcellular location, and protein functions are indicative, rather than exhaustive.  
2Abbreviations used in this table: A, adrenal; B, brain; C, colon; cyto, cytoplasm; E, endometrium; ER, endoplasmic reticulum; Es, esophagus; FA, 

fatty acid; Fe, fetus; F, fat; GSH, glutathione, Gb, gall bladder; Gg, golgi apparatus; Pr, prostate; L, liver; memb, cellular membrane; mito, 

mitochondria; N, nucleus; Nu, nucleolar; S, skin; SI, small intestine; T, testis; Th, thyroid; Trx, thioredoxin, U, uterus; Ub, ubiquitously expressed; 

llUb, ubiquitous low level expression, (?), incompletely characterized.  
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